3,190 research outputs found

    Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Get PDF
    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wavefunction. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions

    Mapping archaeological landscapes through aerial thermographic imaging

    Get PDF
    This project aims to develop techniques for efficient, high-resolution aerial thermal infrared imaging of archaeological sites and surrounding landscapes. Archaeologists have been aware since the 1970s that images which record thermal wavelengths of light can reveal surface and buried archaeological features that are otherwise invisible, but the costs and difficulty of the technology has made its application beyond the reach of most scholars. This project will develop methods for collecting high-resolution thermal infrared images using a specialized camera mounted on a remote-controlled unmanned aerial vehicle. Conducting surveys at archaeological sites in three environmentally and culturally distinct regions--Cyprus, Dubai and South Dakota--our results will demonstrate the potential and limitations of the technology in a variety of archaeological contexts, offer guidelines for executing surveys and processing results, and serve as a blueprint for other investigators in the future

    LEMA: A tool for the formal verification of digitally-intensive analog/mixed-signal circuits

    Get PDF
    pre-printThe increasing integration of analog/mixed-signal (AMS) circuits into system designs has further complicated an already difficult verification problem. Recently, formal verification, which has been successful in the purely digital domain, has made some in-roads in the AMS domain. This paper describes one such formal verification tool for AMS circuits, LEMA. In particular, LEMA is capable of generating a formal model from simulation traces that, when coupled with a formal property provided in our new property language, can be model checked with one of three model checkers within LEMA. This paper briefly describes the capabilities of the LEMA AMS verification tool flow

    Photoacoustic effect for multiply scattered light

    Get PDF
    We consider the photoacoustic effect for multiply scattered light in a random medium. Within the accuracy of the diffusion approximation to the radiative transport equation, we present a general analysis of the sensitivity of a photoacoustic wave to the presence of one or more small absorbing objects. Applications to tumor detection by photoacoustic imaging are suggested

    Exact location of dopants below the Si(001):H surface from scanning tunnelling microscopy and density functional theory

    Get PDF
    Control of dopants in silicon remains the most important approach to tailoring the properties of electronic materials for integrated circuits, with Group V impurities the most important n-type dopants. At the same time, silicon is finding new applications in coherent quantum devices, thanks to the magnetically quiet environment it provides for the impurity orbitals. The ionization energies and the shape of the dopant orbitals depend on the surfaces and interfaces with which they interact. The location of the dopant and local environment effects will therefore determine the functionality of both future quantum information processors and next-generation semiconductor devices. Here we match observed dopant wavefunctions from low-temperature scanning tunnelling microscopy (STM) to images simulated from first-principles density functional theory (DFT) calculations. By this combination of experiment and theory we precisely determine the substitutional sites of neutral As dopants between 5 and 15A below the Si(001):H surface. In the process we gain a full understanding of the interaction of the donor-electron state with the surface, and hence of the transition between the bulk dopant (with its delocalised hydrogenic orbital) and the previously studied dopants in the surface layer.Comment: 12 pages; accepted for publication in Phys. Rev.

    The Deep Subsurface Biosphere in Igneous Ocean Crust: Frontier Habitats for Microbiological Exploration

    Get PDF
    We discuss ridge flank environments in the ocean crust as habitats for subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. We describe the nature of selected ridge flank crustal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. We present a brief overview of subseafloor conditions, within the context of these three characteristics, for five field sites where microbial studies have been done, are underway, or have been proposed. Technical challenges remain and likely will limit progress in studies of microbial ridge flank ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework such that as presented in this paper, perhaps including alternative or additional physical or chemical characteristics, is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flanks

    Topological phases of a dimerized Fermi-Hubbard model for semiconductor nano-lattices

    Get PDF
    Motivated by recent advances in fabricating artificial lattices in semiconductors and their promise for quantum simulation of topological materials, we study the one-dimensional dimerized Fermi-Hubbard model. We show how the topological phases at half-filling can be characterized by a reduced Zak phase defined based on the reduced density matrix of each spin subsystem. Signatures of bulk-boundary correspondence are observed in the triplon excitation of the bulk and the edge states of uncoupled spins at the boundaries. At quarter-filling we show that owing to the presence of the Hubbard interaction the system can undergo a transition to the topological ground state of the non-interacting Su-Schrieffer-Heeger model with the application of a moderate-strength external magnetic field. We propose a robust experimental realization with a chain of dopant atoms in silicon or gate-defined quantum dots in GaAs where the transition can be probed by measuring the tunneling current through the many-body state of the chain.Comment: 11 pages, 7 figure

    Protectors of Wellbeing During the COVID-19 Pandemic: Key Roles for Gratitude and Tragic Optimism in a UK-Based Cohort

    Get PDF
    The COVID-19 pandemic has presented a global threat to physical and mental health worldwide. Research has highlighted adverse impacts of COVID-19 on wellbeing but has yet to offer insights as to how wellbeing may be protected. Inspired by developments in wellbeing science and guided by our own theoretical framework (the GENIAL model), we examined the role of various potentially protective factors in a sample of 138 participants from the United Kingdom. Protective factors included physical activity (i.e., a health behaviour that helps to build psychological wellbeing), tragic optimism (optimism in the face of tragedy), gratitude (a prosocial emotion), social support (the perception or experience of being loved, cared for, and valued by others), and nature connectedness (physical and psychological connection to nature). Initial analysis involved the application of one-sample t-tests, which confirmed that wellbeing (measured by the Warwick-Edinburgh Mental Well-being scale) in the current sample (N = 138; M = 46.08, SD = 9.22) was significantly lower compared to previous samples (d = −0.36 and d = −0.41). Protective factors were observed to account for up to 50% of variance in wellbeing in a hierarchical linear regression that controlled for a range of sociostructural factors including age, gender, and subjective social status, which impact on wellbeing but lie beyond individual control. Gratitude and tragic optimism emerged as significant contributors to the model. Our results identify key psychological attributes that may be harnessed through various positive psychology strategies to mitigate the adverse impacts of hardship and suffering, consistent with an existential positive psychology of suffering

    CYR61/CCN1: A Novel Mediator of Epidermal Hyperplasia and Inflammation in Psoriasis?

    Get PDF
    The complex pathogenesis of psoriasis is still not fully understood. The study by Sun et al. (2015) suggests that CYR61 (now named CCN1), a secreted matricellular protein, has a role in the pathogenesis of psoriasis, and thus targeting CCN1 represents a potential therapeutic strategy in its treatment
    corecore